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We discuss a single server queue whose input is the

versatile Markovian poin t process recently introduced by

M. F. Neu ts (c.f. Tech Report #77/13 , Dept. of Statistics &

CS , Univ. of Delaware), herein to be called the N-Process.

Special cases of the N-Process discussed earlier in the

litera ture include a number of complex models such as the

Markov -modulated Poisson Process , the superposition of a

Poisson Process and a Phase Type Renewa l Process etc. This

queuein g model has great appeal in its applicab ility to real

world situations especially such as those invol ving inhibi-

tion or stimulation of arrivals by certain renewals. The

paper presents formulas in forms which are computationally

tractable and provides a unified treatment of many models

which were discussed earlier by several authors and which

turn ou t to be special cases. Among the topics discussed are

bus y period charac ter i stics , queue length distributions ,

momen ts of the queue length and virtual waiting time . The

anal ysis presented here serves as an example of the power of

Mark ov Renewal Theory.
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_ _ _ _  ~414



~
. ;.

CHAPTER I

THE N-PROCESS AND THE N/G/l QUEUE

1.1 Introduc tion

In this Chap ter we discuss a versatile class of point

processes on the real line which are closely related to

finite -state Markov processes and indicate how a substantial

number of models hitherto used in the literature for modeling

arr ival processes are particular cases. This process was

recen tly introduced by M. F. Neu ts [22], and we shall hence-

forth refer to it as an N-Process. Herein we also define

the N/G/l queue which is the subject matter of this paper.

Section 1.2 discusses probability distributions of

Phase Type (PH-Distributio ns) and Phase Type Renewal Processes

(PH-Renewal Processes) which were also introduced by Neuts

[14,20] and which form the sub-strat a for the definition of

the N-Process. In Section 1.3 we define the N-Process and

summar ize some useful results regarding such a process.

In Sec tion 1.4 we define the N/G/l queueing model and

describe the semi -Markov sequence imbe dded therein. Finally,

the last section provides a number of interesting special

cases of the N/G/1 model some of which have been previously

discussed.



1.2 Phase Type Distributions and Phase Type Renewal
Processes

Althou gh the phase concept has been used extensively In

the literature since its introduction by A. K. Erlang [5],

the use of general phase distributions has remained limited

un til recently. The simplest distributions of phase type due

to Erlan g and bearing his name have been generalized by some

au thors [3,9] by considering mixtures of them , d i fferent

parame ters for di fferen t phases , random number of phases etc.

A systematic discussion of the general phase concept and the

accruing benefits in modeling a wide variety of interesting

qualitat ive features especially of interest in Queueing Theory

are due to Neuts [14] who has also demonstrated the power of

the me thod of phases in a series of papers [15,16 ,17]. We

refer the reader to the cited references for a complete

discussion of Phase Type distributions and their usefulness ,

giving onl y a summary of those results perti nent to our

d iscussion.

Cons ider a continuous-time Markov Process with state-

space {l ,...,m ,m+l } for which the states l ,...,m are transient

and the state m+l is absorbing. We assume that starting at

an y trans i ent state , absorption into m+l is almost certain.

The infinitesimal generator Q of such a Markov Process then

has th e form

ri T °)
= L~ ~ J 

‘ (1.2.1)

where I Is an mxm ma trix with 111 <0 and ~~~~ for i~ i such
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tha t T~~ exis ts. The vector 10 is nonnegative and satisfies

Te+I°=O , where e=(l ,...,l)’ . A vector (ci , cim+i ) of i n i ti al

probab ilities is also given and satisfies cie+am+l =l , O
~~m+l

<L

For the above Markov Process , the probability distribu-

tion F(.) of the time till absorption in the state (m+l ) is

g iven by

F(x) = 1-ci exp(Tx)e , x?O (1.2.2)

Def inition 1.2.3: Any probability distribution F(.) on [O ,oo)

constructe d as above will be called a Phase Type Distribution

(PH—Distri bution). The pair (ct ,T) w ill be called a represen-

tation of F(.).

In the sequel we shall assume that cim+l =O so that F(.)

does not have an atom at 0. In [14] it is shown that one may,

wi thout loss of generality , assume that the representation

(c* ,T) of F(.) is so chosen that the matrix

Q* = T+T°A° , (1.2.4)

where TO is an mxm matrix all whose columns are 10 and

is i rreducible. Henceforth we assume

that this is indeed the case.

The ma tri x Q*, which is of considerable importance , is

the infinitesimal generator of the Phase Type Renewal Process

(PH-Renewal Process ) wh ich is obtained by restarting the

Mar kov Process Q instantaneo usly after each absorption

(renewal) by performing a mult inomial trial with probabilities

a and outcomes l ,...,m. Note tha t the times between

successive renewals of such a renewal process Is the
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PH-D istribution F(.) described above thereby suggesting its

nomencla ture.

For later use we also in troduce the following notations.

~ w ill denote the invariant probability vector of the Markov

Process Q*, i.e., the unique (strictl y pos itive) vector

s a t i s fyi n 9

OQ* = 0, .!~~~ 
= 1. (1.2.5)

We recall from [20] that the stationary version of the PH-

Renewal Process is ob tained by starting the Markov Process Q*

wi th initial probability vector e. We also recall that the

mean of F(•) is given by

= -ciT~~~e. (1.2.6)

It is now easily verified that

- 1 ,

In the sequel A°° will deno te an mxm matrix all whose rows are

a. Also the mxm matrix each of whose rows is a will be

denoted by 0.

1.3 The N-Process

The Markov Process Q* described in Section 1.2 will be

the sub-stratum for the definition of the N-Process. A

transition in the Markov Process Q* from the state i to the

state j will be called an (i ,j)-transition if it does not

involve a renewal (i.e., no visit to the “instantaneous ”

sta te (m+l)), and an (i ,j)-renewal transition otherwise.

No te that unlike the former , the lat ter may go from a state

to itself. We are now ready to describe the arrival process

- 
_ _ _ _



of in terest in terms of the following assumptions.

Assum ptions regarding arrival epochs and group sizes

(A) Durin g any sojourn of the Markov Process Q* in the state

i , 1<i~ m , there are Poisson arrivals of rate A ,1 and group

size density {p1 (k): k~0}. We let q 1 (z) deno te the p .g.f. of

{p
~
(k)} and le t

(B) A t (i ,j)—renewal transitions there are group arrivals

with probabilit y densi ty {r1~~(k): k?0} whose p.g.f. is

Let •(z) denote the rnxm matrix of entries

(C) A t (i,j)-transitions , i$j, there are group arrivals with

probab ilit y density {q~~ (k): k?O} whose p.g.f. is

For no tational convenience in the sequel we set

l~ i~ m and le t 1l,(z) denote the mxm matrix of entries

In dep en d ence Assum pt ions

(D) For every t>0 , given the path function of the Markov

Process Q* the epochs of the Type A arr ivals are conditionall y

independent given the success ive sojourn times , and behave as

a homo geneous loisson process on every sojourn interval.

(E) Given the times and types of the arr ival epochs up to

time t, the grou p si zes are conditionall y i nde penden t and

have the probability densiti es given above.

Defini tion 1.3. 1 : The arri val process defined by the fore-

going assumptions (A)-(E) is called an N-Process.

Le t N(t) and J(t), t?O , deno te respectively the number

of arrivals in (0,t] and the state of the Markov Process Q*

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  A
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at t÷. (J(t) will be referred to as the phase at t). It is

then easy to see that {(N(t),J(t)): t~ O} is a Markov Process

with state-space {O,l ,...}x (l,...,m}.

In [22] it is shown tha t the mxni matrices of probabi li-

ti es P(v~t)= (P1~~(v it))~ v~O , t?0, where

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (1.3.2)

have generating function

z zVP(v ,t)=exp [R(z)tJ, ~~~~ (1.3.3)
v 0

with

R (z)~~ (X)~ (j(z))-~ (X)+To*(z)+T0A0o~ (z), (1.3.4)

where

(1.3.5)

and

(1.3.6)

and ‘ o ’ here and in the sequel denotes the Schur product

(entrywise product) of two matrices . Further it is shown

that the matrix

M(t) = [L~ ~(z ,t ) (1.3.7)
L

8Z 
Jz 1 -

is given by

~ n n- i
M(t) = E E Q*’~ R ’ (l) Q*f l 1 ’~ (1.3.8)

n l  v 0
where

R ’(l) = 
~(Ao~ )+ToC+T°A°oD , (1.3.9)

wi th

-

~

- — - . _ -- --~~~~~~~~~~~~~~~~ - _~~~~~~~-~~~~ 
—

~~~~~~~~~
---



. 1  i=i’(i-)’ C=* ’ (l-), D o ’ (l-) (1.3.10)

~
(
~ oi) 

= diag (A 1yl,... ,Amym ). (1.3.11)

Also the vector

~(t) = M(t)e, (1.3.12)

whose j-th component is the expected number of arrivals in

(0,t] given J(o)=j is given by

[o_ ex p ( Q * t ) ] ( T *e_ Q* Y I R I ( l ) ~~, (1 .3 .13)

where

= O R ’ ( l ) e  (1.3.14)

and t~~ is any real number such that t*~max( _Q~ 1 ). We also
1

recall th at ~ is the arrival rate for the stationary version

of the N-Process which is obta ined by star ting the under lying

Ma rkov Process Q* accord ing to 0.

The following theorem gives an interesting interpreta-

tion for the quantity ~ which will be useful later.

Theorem 1.3.15: ~ is the ratio of the expected number of

arr ivals during a typical renewal interval of the underlying

PH-ren ewal process to the expected length of that renewal

interval.

Proof: Let N 1, N2 , N 3 denote respectively the number of

arri va ls  of types ( A ) ,  (B)  and (C) (described in the defini-

tion of the N-Process) dur in g a typical renewal Interval.

It i s easil y seen tha t
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E(N 1 ) 
= E f  [ci exp (Tx)].x~~~dx=-aT J~(xo i)e.j 0- 3

E(N 2)E  E I [ci exp(Tx)].T°.c* D.k d x _
~T

_ I (T0A0 oD)~~,
~~~~~

and

E(N ) = E Z I [ci exp(Tx)].T.kC. k dx _aT ’(TOC)e.
k o —  ~~

Add ing the above three quant ities and dividing by i~j~ we

have , by (1.2.6), (1.2.7) and (1.3.9) that

T E(N 1 +N 2+N 3)=ORt (l)e=~*,

an d hence the result.

Remark: In v iew of the above theorem we may consider ~~* as a

“g en eral i zed” arr ival rate for the N-Process .

We now presen t some results concerning the matrix

R(0)=~ (A)~ (j(0) )-A (X)+To* (O)+T°A°oO (O)

whic h are somewhat technical in nature and which will be

found necessary for the sequel . Before we do this , le t us

recall [12] the following regarding Stability matrices.

Def ini tion 1.3.16: An mxm matrix A of complex numbers is

said to be semi-stable If Re(o .~)sO for every eigenva lue ~ of

A. It is stable if Re(~s1 )<O for every 1.

Lemma 1. 3 .17: [12]: If A=(a j~~) is an mxm real matrix , a
~~

�O

for i~Ij, and there ex ist positive numbers tl~~•~~•~
tm such that

E tjai .~
O , i=l ,...,m ,

3 3
then A is semi-stable.



We are now ready to prove

Theorem 1.3.18: The matrix R(o) is semi-stable.

Proo f: By comparing R(o) with Q* one can easil y show tha t

for all i~ R~ 1 (0)<O and ~ R~~
(O)

~
O. Since R

~j
(O)

~
O for al l

i~j as i s seen d i rectl y, R(O) sa tisfies the conditions of

Lemma 1.3.17 with tl =~ •• =t m =l~

Before we proceed with our discussion of R (0) we list

the following well-known results governing a nonnega tive mxm

matrix A~O. We refer to Gantn iacher [6] for the proofs of

these results.

(Rl): 
~~~ 

< 
M~x E a1~ for ever y eigenva lue 6~ of A.

(R2): There exists a nonnegative eigenvalue 6 of A satisfying

for any other eigenva lue 6~ of A. 6 is called

the Perron-Frobenius (PF) eigenva lue of A.

(R3): Suppose B is irreducible and B�A. If the PF-eigen-

values of A and B are equal, then A=B.

(R4): If A is stochastic , then the PF-eigenvalue of A is 1.

Sup pose now that the ma trix R(O) is not stable. Then by

Theorem 1.3.18 , R(o) has an ei genvalue which is zero or

purely imaginary . In either case for every t>O , exp [R(O)t3

has an eigenvalue which has absolute value 1. Now note that

for all i ,j,



(ex~ [R(O)t])1~ 
=

= P [N(t)=o,J(t)=jIN(o)=O ,J(o)=i]

~ P [ J ( t ) = j~~N ( O ) = 0 ,J ( O ) = i ]

= ~1~~(l~ t)=[exP(Q*t))jj.

Since 1 is the absolute value of an eigenvalue of exp[R(O)t],

by CR1 ) and (R2) and the sub-stochasticity of ~(O,t), we now

have that the PF-eigenva lue of ~(O ,t) is 1. Our assumption

of the irreducibilit y of Q* and (R3) now impl y that

exp[R(0)t] éxpfQ~t] for all t>O ,

or
R(o) = Q*

Thus we have proven

Theorem 1.3.19: If R(0)~ Q*, then R(O) is stable.

Remark: The condition R(0)~ Q* is equivalent to asserting

that for some i , l~~i~ m , at least one of the conditions

a) A j[l-$ i (O)]>O ,

b) for some j, ~~~~~~~~~~~~~~~

c) for some j~ i,

is true. From the definition of these quantities above , it

is clear that if the above condition is not met then the N-.
- 

Process canno t develop beyond zero.

We shall from now on make the assumption of non-

tr iviality of the N-Process , viz. , R(O),~Q* , so that the



conclusi on of Theorem 1.3.19 holds. A useful consequence of

this assumption we now record as

Corollar y 1.3.20: [sI-R(o)]~~ ex ists for all s?0.

Proof: Since R(O) is stable , every eigenva lue of sI-R(O),

for s?0, has positive real part and hence the result.

1.4 The N/G/l Queue and the imbedded semi-Markov Sequence

We cons ider a single server queue In which arrivals

occur accord ing to an N-Process defined In the previous

sec ti on , and the service times of successive customers are

independen t identically distributed random variables. It is

assumed that the input and the service processes are mutually

independent . Such a model will be denoted by N/G/l.

For the purpose of di scussin g queu e len gt h , busy per i od

etc., it is clear that the order of service is immaterial;

all tha t we shall assume are that the server cannot idle as

long as there are customers in the system , and tha t having

started a cus tomer ’ s serv i ce , the server mus t proceed to its

conclus ion without interruption. In Chapter V , for the

purpose of discussing the virtual waiting time alone , we

shall make the additional assumption that the server must

serve the groups in the order of their arrival , the order of

service w ithin each group, once aga i n , bein g arbitrary .

For describ ing the N-Process characterizing the input we

shall use the same notations used In Section 1.2. The

service time c.d.f. assum ed to be non-degenerate will be
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denoted by i~H(.), its Laplace-St ieltjes transform (LST) by

H(•) and its moments (about the origin), whenever they exist ,

by ~~~~~ 1=1 ,2 

We now define the r.v.s . {c~ : n?O} as the successive

epochs of departure and assume r0=0. Defining Xn and to

be respectively the queue length (i.e., the number of cust-

omers in the system) and the phase of the N-Process at

it is easil y seen that {(Xn ,J n ,Tn+l
_ t

n ): n�0} form a semi—

Mar kov sequence with state—space {0,1 ,...}xfl,...,m } and

transi tion probability matrix ~~ ( . )  given by

B0 (x )  ~1
(x ) B2 (x )

A 0(X) A 1 (x) A2(x )

~(x ) = 
0 A 0(x) A 1 (x ) . . .  •~~ , X~O , (1.4.1)
0 0 A 0(x )

where the mxm matrices of mass functions

x
A (x) = I P(n ,u)d~ (u), n~O , x�0., (1.4.2)n 

~~~
_ — —

n+l
= 

k=l k n_ k +I n?O , x?0, (1.4.3)

and
x

Uk (x)={f P(O,y)dy}{T°A°or(k)+Toq(k)+~ (x)A (p (k))},0-
k~ l , x�O (1.4.4)

where r(k) and q(k) are mxm matrices w ith respective entries

r1j(k) and q 1~~(k), p(k) Is an rn—ve ctor with entries p 1 (k)
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and A(a(k)) is an mxm diagonal matrix with p(k) along the

dia gonal. Also * in the definition of B~ (•) in (1.4.3)

deno tes matrix convolution. We note that the (i ,j)-th entry

of Uk(x) is the conditional probability , given J(O) i , that

the first arrival occurs at or before x and is of group size

k , and that the phase of the N-Process at the epoch of the

firs t arrival is j.

We now in troduce the following notations for use in the

sequel. R~~ (x) will denote the renewa l function giving the

expected num ber of visits in [O,x] to (k,t) by the Markov

Renewal Process define d by ~~(.) given that the initial state

is (i ,j). Also m(i ,j) will denote the mean recurrence time

of the state (i,j) In the Markov Renewal Process 
~~

( • ) .  For

the resul ts govern in g these quantities we refer the reader to

çin lar [2] and Hunter [8].

Before conc luding this section we point out that most of

the results in the sequel are obtained by studying the

imbedded sem i-Markov sequence descr ibed above , and we shall

invoke many a result from the literature governing semi-

Markov and Markov Renewa l processes. The basic definitions

and results on these proces ses are by now quite well -known ,

and an excellent accoun t of these may be found In the work of

çinlar [2]. Amo ng the basi c references in this connection

[2,8,18,24 ,25], we draw particu lar attention to those of

çinl ar [23, Hunter [8] and Neuts [18].

“ -1

~ 

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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1. 5 Some Special Cases of the N/G/l model

Below we presen t a few interesting special cases of the

- b  N/Gil model. Most of the material below Is based on Neuts

1~ [22] and presen ted here for completeness.

(a) PH/G/1 Queues: In the definition of the N-Process if we

set X l = • • • =A m O
~ 
*(z)~ E , •(z)=p(z)E, where E is an mxm matrix

each o f whose en tr ies is 1 , an d where p(z) is the p.g.f. of

the group size , then we get the PH/G/l queue (with group

arrivals) wherein the inter-arrival times are i.i.d. phase

type with c.d.f. F(.) given by (1.2.2). As pointed out

ear l ier , queues with exponential , generalized Erlang and

hyper-exponential inter-arrival times are but few of the

special cases of this large class whose versatalit y stems

from the closure properties of Phase Type distributions

proven in [14].

While some of the very special cases in this class such

as the M/G/l and Ek/G/l models have been discussed earlier In

the l it erature , there is no systematic discussion of PH/G/l

queues in their generality . The nearest attempts at this are

the work of Carson [1] who discussed computational methods

for PH/PH/i queues , i.e., queues where both inter— arrival and

service times are of Phase Type and that of Cox [3] who

discussed queues wi th “rational arrival processes ” , a c lass

of processes whic h is only slightly more general than PH-

Renewal Processes. In this connec tion we point out that

the present theory on rational arrival processes , due to 

- -~~~~~- ---~~~~~~~ --- -~~~~~~~~~ . -  ~~~~~- - —- -—  - - - -
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I ts heavy reliance on complex arithmetic , is not computa-

tionally very attractive. As will be seen In the sequel ,

the formulas in this paper are presented in a form computable

in real arithmetic.

(b) Superposition of a Poisson Process and a PH-Renewal

Process: Kuczura [10] considers a queue whose input process

is the superposition of a Poisson and a renewal process where

the inter-arrival times of the latter have a rational Laplace-

Stieltjes transform . This is only slightly more general

than considerin g the superposition of a Poisson Process and a

PH-Renewal Process. In [22] Neuts has pointed out the

prac tical merit of considering queues of this type where the

Poisson Process describes a “back ground inp u t ” and the PH-

Renewal Process (wi th group arrivals) describes “burst

inputs ” . Such a process corresponds to a given matrix I and

a vector a and the parameter choices A
1
EA , + 1 (z )~ z,

•(z)=p(z)E, p (z)=E , where p(z) is the p.g.f. of the group

size in the renewal arrival process and E is an mxm matrix

wi th each entry equal to 1.

Stochastic models which involve superposition of (even

as few as two) general renewa l processes are , in mos t cases ,

intractable. The results in the sequel become important when

one no tes that the N-Process contains as special cases a

lar ge number of such complex models as the one described

above.

- — -

~
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(c) Queues wi th Markov—Modulated Poisson Arrivals: If In

the definition of the N-Process we set q,(z)=i(z)=E where E

is an mxm matrix of l ’s , and •1 (z)=z for l 5i~ m , then we

obtain the Markov-Modulated Poisson arrival process which

has been used by several authors [13 ,21 ,23 ,28] to descr ibe

the inpu t to queues. Such a process can be used to model a

large variety of queue ing phenomena such as rush-hour

behavior and others. The work of Heffes [7], which , in a

telephone engineering context , deals with the Interrupted

Poisson Process in which arrivals occur on al ternating

exponen tially distributed intervals , is of this type and

corresponds to the choice

r-~ a- i  rol
I = 

1 1 10 = I ~. 
= (1,0)

L° °2J L°2J
n f l

A 1 =A, •i (~
)
~~~ 

A 2=O , •2(z) arbitrar y, •(z)=~i(z)=~1 1J
The model of Heffes can be easily generalized by defining an

in terrupted Poisson Process on an alternating renewa l process

of phase type. For further discussion on this we refer the

reader to Neu ts [22].

(d) Queues wi th arrivals inhibited or stimulated by renewals:

In his paper [22] Neuts discusses how tractable qualitat ive

models for arrival streams wh ich ex hibit an inhibition or

stimulation of arrivals for a certain length of time by

certain renewal epochs can be modeled as an N-Process. Such

models are of considerab le prac tical interest .

_ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _  __ __ -~~~- -- - - 44
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A PH-Distri bution is called progressive if it has a
- 

represen tation (c& ,T) in which T Is up per -triangular. It is

easy to see that a PH-Distribution is progressive 1ff it is

a finite mix ture of generalized Erlang distribu tions. Since

every path function of the Markov Process Q is then non-

decreas ing, we can, by su i tab le  cho i ces of the A 1 -parame ters

of s ta tes c lose to renewals , model any inhib itory or

stimula tory effect of the renewal.

The examp les presented above should indicate to the

reader the w i de gamu t of queues tha t are s pecial  cases of the

N/G/l model . The ensuing discussion which presents a unified

treatment of these special cases in a computat lonally

trac table form , we hope , enhances the merit of the N-Process

as a versa tile model for describing input to queues. 

--- - ---.- . -~~ - --- .~~~~~~ - 44
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CHAPTER II

THE BUSY PERIOD AND THE BUSY CYCLE

2.1 Introduction

In this Chap ter we show that the Semi-Mar kov Process

~~
( • )  de fined in Section 1.4 is a special case of a general

class of such processes studied by Neuts [18]. Appealing to

the results proven in [18] we obtain , in terms of an appro-

p ria tel y def i ned tra f f ic  in tensi t y p , a necessar y and

suffic ient condition for the stability of the N/G/l queue and

derive the busy period characteristics in terms of the

m inimal solution in the class of sub-stochastic matrices of a

cer tain non—linear matrix functional equation. The necessary

no ta ti ons and p re l im inar ies  to th i s end are set for th in

Section 2.2. In Section 2.3 we discuss the busy period of

the N/G/l q ueue o btainin g the join t transform of the nu mber

of services during a busy period and the duration of the busy

period. We also obtain the expected number served during a

bus y period in an easily computable form . The last section

provides a similar disc ussion of the busy cycle.

2.2 Notations and Prel iminaries

Throu ghout this paper we shall adopt the convention to

deno te probability mass functions by upper-case Roman letters

___________________ 
-~~~~~- -~~~~~~~~~~~~~ - ~l4
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su perscripted by a tilde and their Laplace-Stlelt jes trans—

forms (LST ’s) by the same letters without the tilde. Thus

uk
(-. )

~ 
A~(.) and B~ (.) will respec tively denote the LST ’s of

uk (•), A ,1(.) and ~~t•). The values of these LST ’s at 0+ are

respectivel y denoted by U k , A~ and Bn~ We le t

A ( x )  = E A (x) (2.2.1)
n=0 n

an d denote the LST of A(.) by A(.). Also A=A(0+). We now

define the generating functions

A (z ,s)= E A~~( S ) Z n
, zkl , Re s?O , (2.2.2)

and

U(z,s) E Uk ( s ) z k , zkl , Re s?0, (2.2.3)
k=l

an d not e tha t A A ( l ,0), IJ=U(l ,O).

Lemma 2.2.4

For Iz i, Re s~O ,

U(z ,s)=[sI—R(0)] 1 [R(z)—R(O)] (2.2.5)

Proof

U(z ,s)= E z~~ e~~~ dU k (x )

=[J e SX P(0,x)dx
] 
[;z T o A o or(k)÷Toq(k)+~ (A)~ (E(k))~

by (1.4.4)

=fsl-R (O)J 1 fR (z)-R (O)]

by Corollary 1.3.20 , and the fac t that

- - -  -~~~~~~~-~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~ -~~~~~~ --- - -
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k 1

which is an easy conseque nce of (1.3.4).

Bas i c to our d i scuss ion  of the b us y per i od an d the b us y

cycle are the first passa ge times of the semi-Markov process

~
(.) from the set of states i+1 {(i+l ,j): l~ j.$m} to the set

of states i={(I,j): l~ j~ m }. We now set up a number of

no tations to describe these first passages.

Let ~~(k ,x) be the probability that, given that the

sem i-Markcv process 
~~
(.) starts in the state (i ,j), i t reaches

the set 0 for the first time after k transitions by visiting

the state (O,j’) and the time of such a first passage is

atinos t x. The matrix ~~
‘
~~(k ,x) w ill have the entries

l~ j,j’~ m.

In par ti cular , the matrix &h](k,x) will be denoted by

~(k,x). The sequence of matrices {G(k ,x): k?0}, x�O , def i nes

completely the first passage time distributions from 1 to 0,

and , as note d by Neuts [18], in view of the structure of 
~

( • )

also from 1+1 to i, for i~ O. We define the transform

G (z ,s)= z f e Xd~ (k ,x ) z k , (2.2.6)
k=l 0—

for I z I~ l and Re s~ O. For no ta t ional  convenience we shal l

wr ite G(l- ,O+) as G.

Not i ng tha t 
~~
(•) h as a s truc ture same as the general

class of such matrices discussed by Neuts [18], we can

specialize the general results to the case at hand. Before

-- -~~ -__- -- - —-- -- 
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we s tate the relev ant resu l ts , followin g Neuts [18], le t us
give the

Definition 2.2.7: The semi-Markov process ~~( . )  is boundar y

leading 1ff G>~ O.

The followin g theorem establishes the boundary leading

property of the semi-Markov process

Theorem 2.2.8:

(-I) A is irreducible and stochastic.

(ii) The diagonal entries of A 0 are all posi tive.

Proof:

(I) follows from the irr educibility of Q* and the non-

degeneracy of H(.), in view of the rela tion

A = I exp(Q*t)dii (t). (2.2.9)
0-

(ii) is obvious by noting that for every l~ i~ m,

A 0(i ,i) 
= .r P..(O ,x)dii (x)

0- ~

and tha t P~ 1 (0~x)>O for every x?0.

Corollar y 2.2.10: The semi—Markov proces s 
~~

( . )  is bound ary
lead ing. 

- -

Proof: By Theorem 2.2.8 and the structure of 
~

( . ) ,  It is

seen that ~~(oc ) is Irreducible. It is obvious that this

im plies the boundary leading property .

~
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We now state the basic results obtained by Neuts [18] as

Theorem 2.2.11:

( 1 )  If we de fi n e G[1](z ,s )  as the ana l o gous tr ans form

of {~
[1](k X) : k?O , x~ O}, then G~ ’~~(z ,s) is the i-th power of

the matrix G(z ,s).

( ii ) G(z ,s) sa tisfies the non-linear matrix functional

equation

G(z ,s)=z z A~ (s)G
n (z ,s)=zA(G(z ,s),s) (2.2.12)

n=O

w here A ( z ,s) is as in (2.2.2).

(iii) For 0~z~ l , s>O , there exists a unique nonnegative

matrix G(z,s) which satisfies Equation (2.2.12). The entries

o f G ( z ,s )  are ana lyti c func ti ons of z and s , and the matrix

G(z ,s) may be written in the form (2.2.6), and the entries of

all matrices ~(k ,.), k~O ar e probability mass functions. The

ma tr i ces ~( k ,o3), k?O are all nonnegati ve , and the matrix

G = G(1- ,O+) = ~ ~ (k ,o
~), (2.2.13)

- k=l

def ined by continuity , is sub—stochastic.

(iv) Let p=ir~~, where is the invariant probability

vector of A and

O = E flA n e. (2.2.14)
n=l

If p~ l, the matrix G is stochastic. If p > l, at least one

com ponent of Ge is less than one. 

- --— — . — -~~~~~~~~~~~~~~~ -- - -~~~~~~~~~~~ —-~~---~~~ - - . -- —
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(v) The matrix G is the m inim al solution , i n the c lass

of su b-stochastic matrices , of (2.2.12) wi th z=l , s=0 , and

can be computed by the recurrence relations

G0 0
( 2 2 15)

= 

~~ 
~~~~ n?0

The ma trices (G e : n~ O} defined above are non-decreasing.

(v i) The Markov Renewal Process defined by 
~

( • )  is

pos itive recurrent , null recurren t or transient according as

p is less than , equal to Or greater than 1.

Remarks:

(i) The equa tion (2.2.12) Is the analogue of Tak~ cs ’

equation [26] for the M/G/l queue.

(ii) The recurrence relation (2.2.15) yields rapid con-

vergence and thus facilitates easy computation of the matrix

G.

Theorem 2.2.16:

( 1 )  r 0 , where a is the invariant probability vector

~f Q*

(ii) ~~~~~~~~~~ wher e ~ * is the “arrival rate ” given by

(1.3.14) and ~~~~~~ is the mean service time.

(iii) The N/G/l queue is stable iff p <l .

Proof:

(i) follows from (2.2.9) and the uniqueness of the

invariant probability vector. 

- ---~~~~~~~~~~~~--~~~~~~~~ --~~-- - - ~~~~~ —~~~~~~~~~~~~~~ — - - - ~~~~~~~~ - -- ---____
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(ii) Notin g that

= E nA e=f— A(z ,s ) e
n= 1 ~ z=l-

s=O+

= I M(t)e dii (t),
0-

we have by (1.3.8)

= 

~-(n~ i ~T 
z Q*”R ’ ( l )  Q* 1

~~ e) d~ (t),

whence,

in v iew of (1.3.14) and the fact that oQ*=0 .

(iii ) is only a re-statement of Theorem 2.2 .11 (vi).

Remark: In v iew of the remark following Theorem 1.3.15 , p

may be called the traffic intensity of the N/G/l queue. The

N/G/l queue -is stable iff the traffic intensity is less than

1. In the sequel we shall always assume that p -<l .

2.3 The Busy Period 
-

Note that from its definition it is clear that G~~~(z,s)

for k�l completely specifies the busy period which starts

wi th k customers of the N/G/l queue. In this section we will

be concerned with the first busy period of the N/G/l queue

given that the queue starts wit h no customers at time 0. As

w ill be evident later, this discussion will be found useful

in determining the invariant probability vector of Q ( o o ) .
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In the last section we noted that the matrix G is

strictly positive and stochastic. We let ~ deno te the invar-

iant probability vector of G and define G°° to be the mxm

ma trix each of whose rows is j. Defining to be the

expec ted first passage time from (i+l ,j) to 1 , i?0 , i n the

semi-Markov process ~ ( . )  and to be the expected number of

serv i ce com p le t ions during such a f i rs t passa ge , we can

eas ily prove the following result whi ch yields the vectors

i~ and ~ whose j-th components are respectively and i~~.

Theorem 2.3.1:

= ( I _ G + G 0 0 ) [ I_ A + G 0 0 _~~(~~) G 0 0 ] ~~~~ (2.3.2)

and

R= ( I_ G + G 0 0 ) [ I _ A + G 0 0 _
~~(~~) G 0 0 ] fl

~~, (2.3.3)

where 
~
(O)=diag (

~
1,...,8m ) and ~ Is as in (2.2.14).

Proof: It is shown in [18] that

j ( I _ G + G 0 0 ) [ I _ A + G 0 0 _
~~( 8 ) G 0 0 ] ~~~e

and

j~.= ( I _ G + G 0 0 ) [ I _ A + G 0 0 _~~(~ j G 0 0]~~ E
n=O

wh ere

A~ “ = I x dA (x).n

The theorem fo l lows by notin g tha t

A~~~e = I x d~i(x)e = 
( l ) e

n=O 0- — —

_ _ _ _ _ _  _ _  -



Remarks: Higher moments of the duration of the first passage

times and the number served durin g such first passages can be

found by differentiation of equation (2.2.12). We refer the

reader to Neuts [18] for the formulas and computational

methods governin g these quantities.

Corollar y 2.3.4:

= ~( l)  
~i (2.3.5)

Remark: Equa tion (2.3.5) simply states that the expected

first passa ge time is the product of the expected number

served dur ing such first passage and the expected duration of

each service , a resul t which is intuiti vel y quite obvious.

Corollar y 2.3.6:

j  = ( l — p ) ~~
1 ( 2 . 3 . 7 )

ii = p~~I ) (~~ p)~~ (2 .3 .8 )

Proof: These follow easil y from (2.3.2) and (2.3.3).

Remark: The formulas (2.3.5), (2.3.7) and (2.3.8) provide

powerful compu tational checks on the accuracy of numerical

compu ta t ions of j  and ~ using Theorem 2.3.1. Hav ing computed

G using (2.2.15), with a little additional effort one can

easil y compute j  usin g an algorithm such as Wachter ’ s method

[27].

We now define L(z ,s) to be the joint transform of the

number served and the dura tion of the first busy period of the

—---- -— ---

~ 
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N/G/l queue, given that at time 0 there are no customers in

the system. The matrix of mass function s C(k ,x) associated

wi th L(z ,s) is such that its (j,j’)—th entry is the con-

ditional probability , given X (O)=O and J(O)=j , that the first

bus y period of the N/G/1 queue is of duration less than or

equal to x and consists of k services and that at the epoch

where the busy period ends the phase of the N-Process is j’ .

A direc t probabilistic argument yields

Theorem 2.3.9: 
-

L(z,s)= E Uk(0) G
k(z,s)=U(G(z ,s),O) (2.3.10)

k=l

where U(z ,s) is given by (2.2.3).

Def ining and to be respectively the mean number

served dur ing and the mean duration of the first busy period

given X(0)=0, J(O) j, and j~ and j~~ to be the vectors with

and ~~ as their respective j-th entries , l~ j~m , we can now

prove

Theorem 2.3.11:

1j* [u(l ,0)—U(G ,0)—R~~ (o)R ’ (1 ) G 0 0 ] ( I _ G + G 0 0 ) ~~~j  (2.3.12)

~* [U( l ,O ) J ( G ,O)... R l( O ) R I ( l ) G o o ] ( I . . G + G o o ) lp (2 .3 .13 )

Proof:

= f- L(z ,s)eZ z= l—
s=0+

k-i
= E U k(0) E GVi by (2.3.10)
k 1  v 0  

-~~~ - -- --~~~~--- ~~~~~~~~~ -- - —~~~~~~~~~~~~~ - —--- - --~~——- - -~~~~~~~~~ --
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= [k
~ l 

Uk ( O ) ( I_ G k+ kG00)] (I_G+G00)~~~j

=[U(l ,O)_U(G,O)_R~~~(0)RI (l)G00](I_G+G00)
Ij.

The third equality above is obtaine d by rewriting

k— i 1 k— 1
E G”=~ z G

V (I_G+G00) 
~

v 0  L v 0  .1

and using the fact that GG°°=G°°G=G°°. The last equalit y

follows from

E k Uk(0) 
= -R~~(O)R’(1) ,k= 1

a formula provable by differentiating (2.2.5) with respect to

z and setting z=l— , s0+ .

The proof of (2.3.13) is analogous and hence omitted.

Corollar y 2.3.14:

= ~(1) ~~* (2.3.15)

Remarks: Although the formulas (2.3.12) and (2.3.13) above

appear to b e ra ther com pl ica ted , in actual practice they are

well-su ited to numerical computations. Note that

U(1 ,0)=I_R I (0)(T+T0A0) while implementing these formulas.

The formula (2.3.15) is, once agai n , quite intuitive.

2.4 The Busy Cycle

The sub ject matter of this section are the successive

returns of the semi-Markov process Q(.) to the level 0. Let

K0(z ,s) be the joint transform of the number served during

and the duration of the busy cycle. R0(n ,x), the matrix of

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 44



mass functions , of which K(z ,s) is the transform is such

that its (j,j’)-th entry yields the conditional probability ,

given that the busy cycle starts In phase j, that the busy

cycle consists of n services , is of duration atmost x and

ends in phase j’ . By a direct probabilistic argument we

ob tain

Theorem 2.4.1:

K0(z ,s) [sI~R(O)J
1 [_R (0)]L(z,s) (2.4.2)

where L(z,s) Is given by (2.3.10).

Proof:

K0(z,s)= E zB (:)G”(z,s)

v 0 (k l 
Uk(S)AV k +l (s)) G”(z ,s)

= E Uk(s)G
k(z,s), using (2.2.12)

k=l

U(G(z,s),s)

=[sI—R( 0)] 1 E {T0A0 or(k)+Toq(k)+A (A)A (~ (k))}G
k(z,s)

k= 1

=[sI—R( 0)]~~[-R(O)] ~~

‘ 

Uk (0)G (Z,S)
k= 1 

~~~~~~~~~ — -~~~~~~~~~ -- ~~~~~~~~~ -
- - -—--- 
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By evalua ting —}
~~ 

K~ (l ,s ) e  , we can easil y prove
s= 0+

Theorem 2.4.2: Le t be the mean duration of a busy cycle

starting in phase j, l~~j~~m. The vec tor j~ whose j-th entry is

is given by

j  = ~*_ R~~ (0)e (2.4.3)

Remark: Note that the j-th entr y of -R 1 (O) I P ( O ,y)e dy
0-

is the expected duration of an idle period starting in phase

j .  In view of this , (2.4.3) is simply the statement that the

expec ted duration of the busy cycle is the expected duration

of the idle period plus the expected duration of the busy

period fo l low i n g the id le period , a resul t whic h aga i n i s

intuitively obvious!

We conclu de this Chapter by pointing out that it appears

possible to simplify many of the formulas above in certain

special cases. While we shall not pursue this line in detail ,

we p resen t below a few resu l ts  for the PH/ G/ 1 queue to

illustrate our point.

Special Case: PH/G/l queue (with sin gle arrivals )

In this case since R(O)=T , D=E , C=0 , ~=0 and U(z ,O)=A°° z,

man y simplifications occur. For example , we have

= (~~~.)~ _ (2.4.4)

as is seen by specializing in (2.3.11).
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-~~ Further , in this case i t may be verified that

- K0(z ,5) (5I_T) 1TOA0G (Z,S)

= {(SI_T)~~Td }{aG(Z ,S)}

- showing that the idle period and the busy period are

inde pendent.
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CHAPTER III

THE STATIONARY QUEUE LENGTH DISTRIBUTIONS

3.1 I n t r o d u c t i o n

In this Chapter we discuss the stationary distributions

of the queue len gth (i.e., the number of customers in the

system) at a point of departure and at an arbitrary epoch t.

In gen eral , these two are shown to be different. Section 3.2

d iscusses  the s ta t ionar y dis tribu ti on of the queue len g th at

a po int of departure . This is followed by a discussion of the

s ta t ionar y queue len gt h dis tr ibu ti on at an arb i trar y epoc h t

in Sec tion 3.3. We show that the stationary probability that

the server is Idle at an arbitrary epoch t is (l-p ) where p

is the traffic intensity defined earlier — a result which is

pleasantly surprising and not too obvious in view of the non-

recurren t nature of the input.

3.2 Queue length at epochs of departure

The s ta ti onar y q ueue len g th densi t y at the poin t of

departure is denoted by x and is obtained by computing the

Invar iant probability vector of the irreducible stochastic

matr ix Q(oo) which under the assumption pc i is ergodic. The

def ining system of equat ions

xQ (o )=x, xe= l (3.2.1)

~ 

-~~~~~~~~~~~~~~~~~~~ . _ _ _
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can , after partitioning the vector x as

x = (x 0,x 1 ) ,  (3.2.2)

be wri tten as
1+1

x 1 =~~B1+ k=l 
AkA i_ k +l~ 

i> 0. (3.2.3)

Mul tiplying in (3.2.3) by zi and summin g over i?O , we can

easily obtain

Theorem 3.2.4: The generating function

X(z) z x.z~ , Izkl , (3.2.5)
l=O

__I —

satisfies the equation

X(z)[zI-A(z,O)]=x0[LJ (z ,O)-I]A (z ,O) (3.2.6)

where U(z ,s) and A(z ,s) are given by (2.2.3) and (2.2.2)

respect ively.

Corollar y 3.2.7:

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (3.2.8)
1=0 1

Proof: Le t z-’-l - in (3.2.6). We get

X(l— )[I-A] x0[ U( l ,O)-I]A .
Add ing X(l-)o to both sides and noting that X(l-)e=(X(1-)e)e=

o and U(l ,0)_ I=_R~~(O)(T+T0A0), we get

x(l-)( I-A +e)=-~~R~~ (0) (T+T°A° )A+o.

(3.2.8) follows from the non -sin gularity of (I-A+e) and the

fac t that o(I-A+e)=o. 

_
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Corollar y 3.2.9: X( l-)e=l

Remarks: In practice , the system of equations (3.2.3) is

solved by truncating the number of equations at a sufficiently

lar ge value of the index I and then applying an algorithm

suc h as Gauss -Seidel . In the next chapter we shall derive

the first two moments of the queue length with which one may

truncate the system (3.2.3) using a “ii+3a limi t” . Below we

w ill provide a method of computing x0 direct ly using which

X(l—) may be computed through (3.2.8). Equatio n (3.2.8)

provides an excellent computational check on the numerical

compu tation of x.

Below we give an alternat e method for determining the

vectors and which can be effec tively used in the

numerical com pu ta ti on of x for in i t ia l i za ti on purposes in an
al gorithm such as Gauss —Seidel .

Lemma 3.2.10: The mat rix 1(1,0) defined by continuity in

(2.3.10) is irreducible and stochastic.

Proo f: We have

L ( l  ,O)=U(G ,O)=-R~~ (0) z
k= 1

from wh ich the stochasticity of L(l ,O) is easil y verified.

Now , since the strictly po sitive stochastic matrices G
k+G00

as k÷~ , there exists an €>o such that

Gk�€ E for all k~ l ,

~

1

~

___

~ 
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where E is the mxm matrix with each entry equal to one.

T hen

L(l ,0)?—R~~(0)[R(l)—R(0)]eE €E>>0 ,

for

E {T°A°or (k)+Toq(k)+~(X)A (p (k))} R(l)-R(O)
k=l

and

R(l)e = (T+T°A°)e = 0.

In the sequel we let denote the invarian t probability

vector of L(l ,O). The computation of 
~~~~~~~~ 

can , once again ,

be easily done by Wachter ’s me thod [27]. We now prove

Theorem 3.2 .11:

x = (~~j*)
l K 0 (3.2.12)

where is the invariant probability vector of [(1,0) and

j~~~ is given by (2.3.12).

Proof: The probability x(O ,j) is the inverse of the mean

recurrence time of the state (0,j) in the Markov chain Q ( c o ) .

Tha t mean recurrence time is clearly the same as the mean

recurrence time of (O,j) in the Marko v Renewal Process of

lattice type K0(z,O)=L(z ,0). By applying Theorem 2.11 ,

p. 196 , Hun ter [8], the mean recurrence time of (0,j) is

given by (~~~ j * )/ (K
0

) .  where (ic
Ø
)
j 

is the j-th component of

whence the result.



We now discuss some special cases and show that the

ab ove formu l a for x0 particularizes correctly In those

si tua ti ons.

(a) M/G/l queue: It is t r i v ia l  here to ver i fy  that

x0=( l—p) , for , 
(~=l and x0 (~i*Y ’=(l _ p ) in this case.

(b) M/G/l queue with group arr ivals: In this case the

above formula for x 0 s imp l i f ies  to

x0 
=

where n is the mean group s ize , a n d

(c ) PH / G/ l  queue (w i th  s ing le a r r i va l s ) :  We have already

shown that in this case L(l ,O)=A°°G. Now ,

(ctG)A°°G (ctGe)(aG) aG

w h e n c e  ,c 0= c& G.

We noted ear l ie r  at the end of Chapter  II that ~i* = (c t j )e .

Putt ing al l  this in (3 .2 . 11 )  we get

~~1— —=- (aG). (3.2.13)

Note the highly intuitive formula

x0e=l /(ctji)=l/(mean number served in a busy per iod)

wh i ch h olds i n th i s case!

To obtain the vecto r we consider the f i r s t  passage

times from the set i= -C (1 ,j): l~ j~m} to itself. Let k1 (n ,x)

be an mxm matrix such that its (i ,j)-th entry is the prob-

ability that starting in (1 ,i) the Markov Renewal Process

~
(.) returns for the first time to the set 1 -in exactly n

steps at or before time x and that the phase at the epoch

of such a first return is j. Let

L _  _ _ _ _  - 44
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K 1 (z,s ) = E z ~ f e
_ sx dK 1 (n,x), Izkl , Re s >O.

Theorem 3.2.14

K 1 (Z,S)=z
2A
0(s)[I~ ZB 0(S)]~~~ZB(s )G ~~~ (z,s)

+ z E A ( s )G ~~~ (z ,s). (3.2.1 5)
~=1

Proof: By a simp le probabilistic argument considering the

paths wh ich pass through 0 and those that do not, we have

K 1 (z~ s)=zA 0(s ) E z ~
’Bg (s) z zB (s)G ’~~’(z ,s)

+ E z A (s)G~~~ (z ,s),

and s impl i fy ing we get ( 3 . 2 . 15 ) .

Coro l lary  3 .2 .16 :  K 1 ( l ,O) is i r reducib le and sto chas t i c .

Theorem 3.2.17: Let denote the invariant probability

vector  of K 1 ( l ,O ) .  Then

= 
l~~~~~~l ’ (3.2.18)

where c~ =~— K 1 (z,0) is the vector of the mean numberz z=l-
of steps -in a f i rs t  passage from 1 to i t se l f  and is given by

Ic~r = e + A
0

( I _ B
0 )~~~e +

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +

(A _ A O )~~ E A G 1+ E ( v ~ l ) A G0o] ( I~ G+G 00Y l~ ( 3 .2 .19 )

-

~

- -

~

-— - -

~

-- —

~ 

- ---- -~~-- -- --- - — ---- - - — ---~~~~~~~~~~ - -—-— -- -- - ---
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Proof: Note that is the vector of mean sojourn times in

the Markov Renewal Process K1 (z,0) which is of lattice type.

The formula for is got by an analogous argument as in

Theorem 3.2 .11 using a theorem in Hunter [8 ]. The formula

f o r  ,ci ~ given above is obtained by directly computing

~ K 1 (z,O) using (3.2.15) and simplifying the resulting

ex pression.

Remarks:

( i )  It can be ver i f ied  that the expressions given for

and in (3.2.12) and (3.2.18) respecti vely do indeed

satisfy the stead y state equa tion

= x0B0+x 1 A 0. (3.2.20)

We shall om it th e ted i ous de ta i ls and refer the reader to

Luc antoni [11] for such a verification in a more general set-

up.

( i i) Equat ions ( 3 .2 . 1 2 )  and (3 .2 .18 )  are easy to

implement and have been successfully used by lucantoni [11]

for numerical computa tion of and 
~l i n more general

models than the one discussed here.

(i ii) The steady—state equation (3.2.20) provides a

powerful computational check for the numerical computat ion

of and x 1 us ing ( 3 . 2 . 1 2 )  and ( 3 . 2 . 1 8 )  respectively.

3.3 Queue Length in Continuous Time

In this section we discuss the stationary distribution

of the queue length at an arb i t rary epoch. We def ine 



r~~~
I 

~~~
— - _________

y(i,j) Lim P[X(t)=i,J(t)= JIX(0)= i’ ,J(O)=j’]
t+~

where X(t) and J(t) denote respecti vely the queue length and

the phase of the N-Process at t+ . Let be the rn-vector

whose componen ts are y(i ,j), l5j~ m and let 
~~~~~~~ 

) .

• We also def ine the generating function

Y ( z )  = z
i=0

Lemma 3 .3 .1 :

(3.3.2)

Proof: From the relation

A ( z ,O)=f exp {R(z)t}d~ (t)0-
we h a v e

R(z)A(z ,0)=A(z,O)R(z). (3.3.3)

Di fferentiating this with respect to z , letting z+l - and

mult ip ly ing the resul ting equation by e, we get

(T +T °A °)~ =(A- I ) R ’ ( l ) e = ( A - I - e ) R ’ ( l ) e + e R ’ ( l ) e  ( 3 . 3 . 4 )

Now , di f ferent ia t ing ( 3 . 2 .6 )  w i th  respect to z we get on

let t ing z-s 1- ,

x ’(l—)[ I—A ]+X( l—) [I—A’(l — ,O)] =

x0[U(l ,0)-I]A ’ (l— ,O)+x0U ’(l— ,O)A

Adding X’(l -)e to both s ides and mult ip ly ing by e we get

X 1 (l_ )e + l_ X (l_ )O =_ x R l (O)(T÷T0A0)8_x R l (O)R4 (l)e +X~ (l-)e

---— ~——-- --- -—- - --—- - - —~--- 
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In the abo ve if we subs t i tu te  the va lue of X ( l - )  using

(3.2.8) and the value of (T÷T°A°)8 using (3.3.4) and

simplify , we get

-x 0R~~(0)eR’ (l)e=(l—p ) (3.3.5)

or

(—~0R~~ (O)e)(eR ’ (1 )e)=(l—p).

That is _
~ 0R (0)~ =(l_p) /~*. The Lemma follows by no ting

tha t ~* oR’ ( l ) e = p/ p~~~~.

Theorem 3 .3 .6 :

= .~ *x R ~
l (Q) (3.3.7)

Proof: Recalling that ~~~~~~~ are the renewal functions of

the Mar kov Renewal Process 
~~

( . ) ,  we can wri te by a standard

argument considering the state of the semi-Markov process

Q(.) at the epoch of the las t transition be fore t ,
m t

P{X(t)=0,J(t)=jIX(0)=i ’ ,J(O)=j’}= E f  dR ,!,) (u)Pk.(0,t_u).
k=l 0- vr~ J

Le tting t-’ in the above equation and applying the Key

Renewal Theorem (Theorem 6.3 , p. 153 , ç inlar [2 ] ) ,  we ge t
m 1

y ( O , j )= z m ’(O ,k)f P k . ( O ,u )du (3 .3 .8 )
k=l 0— ~

where m(O ,k) is the mean recurrence time of (0,k) in 
~~

( • ) .

By considering the Mark ov Renewal Process K0(l ,s) it is

eas i ly  seen that m(0 ,k )  i s  a lso t h e  mean recurrence time of

(0,k) in thi s Markov Renewal Process. By Theorem 2.11 ,

p. 196, Hunter [8], we have

-- - - - “-4 --- --- -- -- --~~~~~~~~ - -—-~~~~~~ --- - - -  --“ - -  - - —-44



l~ j~ m (3 .3 .9)

where is the invariant probability vector of

K0(l,O)=L( 1 ,0) and ~ is the vec tor of mean durations of the

busy cycle given by (2.4.3). Putting (3.3.9) in (3.3.8) and

• writing (3.3.8) in vector notations , we have

~o = (K 0 )~~~~ [-R~~ ( O ) ]

= [~~j~*
_
~~R ( 0)e) 1 [_K

0R~~(O)] by (2.4.3)

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ by (2 .3 .15 )

= [p (l)_x
0R

_ 1
(O)e]

_ l [_ ~~R ••l (O)] by (3.2.12)

= 
_
~*~~R~~(o) by (3.3.2).

Corollar y 3.3.10: The stationary probability that the

queue is empty at an arbitra ry epoch t is given by

~0
e = ( l — p )  (3 .3 .11)

Proof: This fo l lows eas i l y  from (3 .3 .7 )  and ( 3 . 3 .2 ) .

Spec i al Cases :

1. For the M/G / l queue (w i th  group arrivals) it is easily

ver i f ied that ( 3 .3 .7 )  reduces to y0= ( l- p ) .

2. For the PH/G/1 queue (with single arrivals), formula

( 3 . 3 . 7 )  can be shown to reduce to

1~.0 
= (aGT e- u~ )~~aGT

1

• from which we get

=(-aGT e+ a~y
1 (-aGT~~e) (3.3.12) 

-~~~~~~~~~ - - -~~~~ - ----~ - - — -  -- - —--- - - - — -—-~~~~~~~ --- — - - -  - - -  - - --
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These are ob tained by usin g (3.2.12) and the fact R(0)=T .

In (3.3.12) it may be noted that (-aGT~~e) Is the expected

leng th of an idle period , for , a busy period starts with a

phase given by a whence the phase at the end of the busy

period is given by aG , and fur ther -T ’e I  P(0,y)e dy. Thus
0-

in (3.3.12) which is the stationary probability that the

queue is empty at an arb it rary epoc h t is simply the ratio

of the expected duration of an idle period to the expected

duration of the busy cycle , a result which is qu ite

intuitive!

Let us now define

X E
0- v=O

and
x z dA (x)e=ii~~~e, k?1.

0- v 0  “

Also let o’ =( 6~~’is~ ) .  Note that o (i ,j) is the mean

sojourn time in (i,j) for the Markov Renewal Process 
~~

( • ) .

From this we have

Theorem 3.3.13: The mean recurrence time of (i ,j) in the

Markov Renewal Process Q ( • )  is given by

m ( i ,j)=(x~~~
l x(i ,j)=~*x(i ,j) (3.3.14) 

- - -
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Proof: It suffices to ver ify that

= x [-R (0)e+~~~~e]+ E x

= -x R 1 (0)e+~t~~~ since x e=i

= (~~*)~~ by (3.3.2)

We are now ready to compute the vectors 
~~~~~~~~ 

i~ l.

Theorem 3.3.15:  For i~~l,
I
E ~*[~~ U (O)+x ]f {l—H(u) }P(i—v ,u)du (3.3.16)

v l  - V 0-

Proof: By consider in g the epoch of the last  depart ure

before t we can wr i te

P{X(t)=i,J(t)~ j IX(O)i ’ ,J(O)= j’} =

t m .,., t— u i m
I E dR

~k~ 
(u) f {l-i~(t—u—x)} S S [dU ( x )] k P .(i— u ,t—u-x)

0- k l  0- v=1 p=l “ p ~~~

i t m
+~~~ I S dR 1

k~ (u)Pk .(i_ v ,t_u){ 1_
~
(t_u)}

v l  0- k 1  V J

Let ting t-’ and applying the Key Renewal Theorem (Theorem

6.3, p. 153 , çin lar [2]) we obtain

y(i ,j)=

rn ~ rt i m
= s m~~(0,k)f ~f {1— fi (t—x) } s z [dU ( X )]

k 
P (i— u ,t—x)~-dtk l  O-L0- v=l p l  “ p pj  j

i m 1

+ s 5 r n ’ (v ,k)f Pk4 (i_ v ,t) (l_H(t)}dt
v=l k=1 0—

~

- - — - -

~ 

—- -— 
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Us ing (3.3.14) and putting the above In matrix notations

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+~~* S x I {l-~ (t)}P(i-v ,t)dt. (3.3.17)
v 1  ~ 0-

Now
o a t  i
I I {l—H(t—x )} S dO (x)P(i-v ,t-x)dt
0- 0- V l  ~

oa i
= I s dU (x)f (l- (t-x)}P(i-v ,t-x)dt

0- v l  V

= E U  (0)1 {l-H(u)}P(i-v ,u)du.
v=l V

Putting this in (3.3.17) and simplifying we get (3.3.16).

Theorem 3.3.18: The generat ing function Y(z)= E~~1z
1 is

given by

I ~* (z _ l )~~(z ) R ’ (z )  if 0~ z c l
Y(z) = (3.3.19)

- if z=1

Proof: We have , for O~z<l ,
oa

s s ~*[x0U (0)+x ]I {l-~ (u)}P(i-v,u)du z
i

i= l v=l ‘¼~ 0-

~=l
- O V v f (l-~i(u) }~ (z,u)du

• ~~*[x0(U(z,O)_ I }+X(z)]f {l-~ (u) }~ (z,u)du (3.3.20)
0-

_ _ _ _  44
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Under our assumption R(O)?~q* It is easily shown that R(z) is

sta ble for O~z<l and thus R~~(z) exis ts for 0~z<l . (The

proof of this is exactly analogous to the one establishing

the non—singularity of R(O) presented in Section 1.3 and

hence omi tted.) Thus

I {l-~ (u)}~ (z ,u)du [A (z,0)-I]R~~ (z ) , O<z<1 ,
0-

for ,
A(z ,0)=f exp [R(z ) t ]d i~( t ) .

0-

Pu tting this in (3.3.20) and simplifying with (3.2.6) and

(3.3.7) the expression for Y(z) for O$zcl is obtained .

Now , by letting z+l- in (3.3.20), we have

Y(1~~)=~*[~x0R~~ (O)+{-~~ R~~ (O)Q*+X(l~~)}f {l-~ (u)}~ (l ~u)du]

(3.3.21)

It is now easily shown that Y(l-)e=1. Now ,

(_x
0R~~(O)Q*+X(l_ )}f {1-fl(u)}~ (l ,u)du

0-

= {-x 0R
’ (O)Q*+~

_
~~R 1 (0)Q*A(I_A+o)~~ }

x I { l_ 11 ( u ) } exp ( Q* u)du by (3 .2 .8 )
0-

(l )!_~~R I (O)[I+A (I_A+ o )~~ ]Q*f {1_ii (u)}exp(Q* u)du

us ing the commutativity of Q* with A an d 0.

~(l )o+X0R~
! (O)[I +A (I—A+o)~~ ][I—A )
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - — —  ---------—- ------

Substi tuting this in (3.3.21) and post -multi plying by

Q* it is easil y verified using OQ* 0 that

= 0

We alread y noted that Y(l-)e=l. Now by the uniqueness of

the invar iant  probabi l i ty  vector  Y ( l — ) = o .

Remark: Note that the j - th  component of V ( l - )  is the

stationary probability that the phase of the N— Process is j.

Clearl y this must be O
~

- , for , 0 is the invariant probability

vec tor of the Markov Process Q* govern ing the phases.

We now ver i fy  the cor rec tness of (3 .3 . 19 )  by particula-

rizing it to the

Specia l Cases:

1. M/GJ 1 queue (with single arrivals) : Noting that in this

case ~~=A and R(z)=x (z-1), (3.3.19) reduces to Y (z)=X(z).

Also , after some tedious computati ons using (3.2.6) we can

obtain 
-

Y(z) X(z) (l—p)(l-z)H( X_Az)/{H(x-Xz)-z}-

2. N/G/l queue (with gro~p arrivals ) : In this case after

some tedious computations one gets

Y (z)=(l_P)H (x_x$ (z))+l~~ (Z) 
X(z){l-H(A—x4 (z) ) } ,

for , in this case
y0=(l-p) , x0 (l-p)/n , U(z,0)=~ (z ) , -R 1 (O)=l /x

_ _ _ _ _ _ _ _ _  ----- - - - - -  - - -_—44



-ii_- a:- 
________________________

-i where • (z )  is the p.g. f. of the group s ize and n + ’ ( l- ) .

The expression for Y ( z )  given here coincides with that

obtained earlier by Neuts [19]. 

- — —
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CHAPTER IV

MOMENTS OF THE QUEUE LENGTH

4.1 In troduc ti on

It was pointed out ear l ier  that the f irst two moments

of the queue len gth can be used to truncate the infinite

system of equations

2 ( ° ) 2c , x e l

defining the stationary probability vector x. While it

would be ideal to have effic ient methods for optimally trun-

ca ting the system above , never theless , the problem of

obtain i n g su it ab l e cr it eria for this p ur pose ap pear quite

In tractable , and in the absence of such me thods one has to

rel y on some sim p le p rocedures such as us i n g a “p+3a limit” .

Fortunately, com putational experience reported by Neuts [18]

and Lucantoni [11] seem to favor such a procedure. We shall ,

in this Chapter , obtain the moments of the stationary queue

length d istributions obtained in Chapter III.

The moments of the queue length are c lose ly  re lated to

the deriva tives of the Perron -Frobenius eigenva lue and

associated eigenvec tors of the matrix A(z,O+) as z-’.l - . We

derive the recurrence relations for computing these deriva-

tives in Section 4.2 using whic h formulas for the first two

moments of the queue length are derived in Section 4.3. For

1

~

- _ -, ----———- - ---- - —-— - _
- ------ - - _ —---- —
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a sem i-Markov proc ess 
~

( • )  ha ving a s t ructure more general

than the one g iven by (1 .4 .1) ,  a prog ram for com put ing the

vector  ~ and i ts  f i r s t  two moments using s imi la r  techniques

has been w r i t ten in APL by David Lucantoni [11] and is seen

to be very efficient. We refer the reader to [11] for

deta i l s  of this program.

4.2 Der ivatives of the Perron -Frobeniu s Eigenva lue

Jus t as in Theorem 2.2.8 which establishes the irreduci-

bility of A , we can show that the nonnegative matrix A(z ,0)

for O<z~ l is irreducible. We let n (z) denote the uniquely

def ined Perron-Frobenius e igenva lue of A(z ,O) which is

analyt ic  for z < l .  Let u ( z )  and v ( z )  be the right and left

e igenvectors  respect ive ly  of A ( z ,O) co rresponding to the

e igenva lue  n ( z ) ,  whose co mponents are def ined to be ana ly t ic

for z - c l and such that

v(z)u(z)=v(z)e= I (4.2.1)

v ( l - ) = e , u ( l - ) = e  (4 .2 . 2 )

h o l d , in addi t ion to the def ining equat ions

[A (z , O ) — 1( z ) I ] u ( z ) = 0  (4 . 2 . 3 )

v ( z ) [ A ( z ,O) - 1(z ) I ] =0 .  (4 . 2 . 4 )

Below we present a theorem wh ich shows how the de r i va t i ves

~( n ) (1..), u~~~ ( l- )  and ~~( l- )  can be e va lua ted recurs ive ly

on n , provided that moments of a su fficiently large order

exist for the entries of A(z ,0). Below we denote
n I’

-
~~——~~~ A ( z ,O) by A ’-~~~(l ,O ) .
3z z = l —  

- —- - - _-~~~~~~~ - _-- ----“~~~~~- - — - — -- - - 44
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Theorem 4.2.5: The triples n )(l_ ) ,!~~
1) (l_ ) and ”~ (l-) ,

n?O may be computed recursively for each n for which the

matrix A~~~(1 ,O) is fini te. The recursion formulas are

n~~~(l-) l , u~~~(l-) e , v~~~(l-) o (4.2.6)

n~~ ~(l-) p, u~~ ~~~~~~~~~~~~~~~~~~

v (l)(l~~)=oA
(l)(l ,o)(I~ A+e) -l

~ Po (4.2.7)

an d for n~ 2,

E (n )OA (v)(l ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
v 1  ~ v= i

(4.2.8)

(4.2.9)

- E (
fl
)V
(V)(l )u(~~~~)(l ) (4.2.10)

Proof: Differentiating (4.2.3) n times with respect to z we

ge t

~ ( n ) [A (v ) (Z 0) fl (v ) (Z ) I ] U (n
~

v) ( Z ) O
v O  ~

Pre-mult iply ing this equat ion by v (z )  and let t ing z÷l - y ie lds

in view of (4.2.2),

~ ( n ) [OA (v ) (1 ,O) - n ( l- ) e]u~~~~~ ( l - ) = O
v 0  V —

-from wh ich we have



fl
(n) ( l ) ( n )O A (v) ( l,O) U (n v ) ( l f l(V) (l )OU ( n V ) ( 1 )

(4.2.11)

wh i ch is fini te if A~~~(l,0) is finite. In the case n=~ the

second term in (4.2.11) Is zero and the first term equals

0A~~ ~(i ,O)e=O~ =p showin g n (I 
~
‘(l-)=p .

Di f fe ren t ia t ing  ( 4 .2 .4 )  once and let t ing z÷l- we get

~
(l 
~(1—) [I—A ]=e [A~~ ~(i ~~~~~~ ~(l—)I]

or

~
(1 
~(l-)=o[A ~~ ~(i ,O)-n~~ ~(l-)I](I-A +eY

1+v~~ ~(l-)e

~0A
1
~ ~(l ,O)(I-A +e)~~ -p0 ,

for , the second equality in (4.2.1) implies

whence v ( l ) ( 1_ ) o=o

In general ,  d i f ferent iat ing (4 .2 . 4) n t imes y ie lds

after letting z+l- ,

V (n) (1 )[I~ A]= ( n )V (v ) (l~~) [A (n v ) (l ,O)~ fl
(n -V ) (l~~)I].

Adding ~~~~l — ) e to both s ides and noting that

because of the second equality in (4.2.1), we get (4.2.9).

Differentiat Ing (4.2.3) n times we get after letting

z+l - ,

( I-A )u~~~ (1 - )=  E (~ )[A~~~ (1 o)~~
(v) (l-)I]u ~~~~~(l-).

V l

Addin g ou~~~ (l-) to bo th sides we can rewrite the above

eq ua ti on as

_ _ _ _ _ _ _  _ _ _ _ _  _ _ _  A
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+ [eu (T
~
)(l_)]e (4.2.12)

Differentiating v(z)u(z)El n times and letting z÷1- we get

~ (
n )V (v)(l )U (n

~
v)(1)

v 1  V

n—l i
z (n )V~’

~~(l_ )U ~
n_ v1 (l_ ), (4.2.13)

v-i

f o r , v ( z ) e E l  implies v ~
‘ (l— ) =o . Using (4 .2 .13 )  in

(4.2.12) we get (4.2.10). In the case n l ,  the sum in

(4.2.13) is zero and

~
(l 
~(l—) =( I—A +e)

1 [A~~ ‘(1 ~~~~~~ ~(l—) I]u ~~~ (l— )

and the proof is complete.

4.3 Moments of the Queue Length

In this section we derive the first two moments of the

queue len gth in terms of the derivatives obtained in

Theorem 4.2.5. We wish to derive formulas for computin ”

X’(l-)e and X”(l -)e. To this end let us recall the equation

(3.2.6)

X(z)[zI-A(z ,0)]=x0[U(z ,O)-I]A(z ,O)

Mul tiplying this by u(z) we get

(z—n(z)]X (z)u(z)=n (z)x 0[U(z ,O)-I]u(z) (4.3.1)

-—-- ._- -
.

. —-- -- - -  - _ — --- _ --- - - - - - - --
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Differentiating this with respect to z and rearrangin g

X ’(z)u(z)=-X(z)u ’(z)+

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (4.3.2)

Now , as z+l- ,

— ( l — n ’ ( z ) ) X ( z ) u ( z ) - * — ( l — p ) X ( l — ) e = — ( l — p )

n ’ (z)x0{U(z ,0)-I}u(z)-*p x0{U(1 ,0)—I }e 0

n (z)x0U ’(z,O)u(z)+-x0R~~(0)R’(1)e using (2.2.5)

a n d

x0[-R
1 (O)R(l)J [(I-A +e~~~~-pe] usin g (2.2.5) and (4.2.7)

=_
.~0

R (O) (I_A+e)~~~(T+T0A0)~~, for R (l)=T+T°A ° and R(l)e=0.

=-x 0R
1 (O)(J-A+o) ’[(A-I—e)R ’(l)e+eR’(l)e] by (3.3.4)

Putting all these together , it is seen that as z-.l- the term

in square brackets in (4.3.2) converges to

-(1—p) -x 0R~~(O)0R’(l)e=O (4.3.3)

by (3.3.5).

Thus to evaluate the limit of X’(z)u(z) in (4.3.2) as z*l — ,

we apply L ’Hospital’ s rule on the secon d term in the right

side of (4.3.2). After some tedious computations it may be

verified that this yields 

- --- -—- -- - - - - -
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2(l )[fl(1 +2P~~U (l ,O)e+2px 0{U(l ,0)-I}u ’(l-)

+2x 0U’ (1 ,0 ) u ’ ( l- ) +x 0U”(l ,O)e +~~ { U(l  ~0)- I } u° (l-)]  ( 4 . 3 . 4 )

Now ,

U(z ,O)= I-R~~ ( O ) R ( z )

imp li es

2p~~ [U’ (1 ,O)e+{IJ(1 ,0)—I}u ’ (l—)]=

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ by
(4.2.7)

—2 p~~ R~~ (0)R ’  (1 )e +2px 0 { —R ~ ’ ( 0 ) } [ - R ’  (1 )e+eR ’ (1 )e] by
(3 .3 .4 )

-2p~~R~~(0)oR’(1)e

2p ( 1 -p )  by (3.3.5)

Using this in (4 .3 .4 )  we s impl i fy  the expression for X ’ (l— )e

and state the resul t as

Theorem 4.3.5: The stationary expected queue length immed-

ia tely after a departure is given by

~~{U(l ~O)-I }u ”(l-)
] 

(4.3.6)

The correctness of (4.3.6) Is verified by particularizing to

the
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Special Cases:

a) M/G/l queue: Here U(z ,O)=z , u(z)=l. So , (4.3.6) re-

duces to X ’ ( l~~) P +2 (~ _~ )~ ~
2~ (2) whe re A is the arr ival  rate ,

and ~
(2)  Is the second ( raw)  moment of • ) .

b) M/ G/ l  queue w i th  gro up a r r i va ls :  Here U(z ,O ) = p ( z ) ,

where • ( z )  is the p .g . f . of the group s ize , and u ( z ) = l .  So

we can eas i ly  veri fy th at

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Now -

~“(l-)=A” (1 ~
o)= A 2 2)

{~~~I(1. .)} 2
÷

P

s i nce

A ( z ,O ) = I  e~~~~~~
(
~~

1t d iJ(t) .
0-

It has alread y been shown that x0=(l-p)/~ ’(l-) whence we

have

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Theorem 4.3.7:

X ’ (l~~)=[~ 0U ’ (1 ,o )A +~~{u( l  ,0 ) — I } A ’  (1 ,0 ) — x ( 1  ) { I — A ’  (1 ,O)}](I—A+e)~~

+ ( X ’  (l—)e)e

Proof: D i f fe rent ia t ing (4 .3 . 1 )  w i th  respect to z and let t ing

z÷l - we ge t

• x ’  (1—) [I—A ]=~~u ’(l ,o)A+~~(u(l ,O)—I }A’(l ,O)—x(l) {I—A’( l ,0)}.

Adding X ’ (l-)o to both sides and simplifyin g we get the

expression for X ’ (l- ) given above. 



• -

We a lso  obta in a formula for the s ta t ionary  mean queue

lengt h in continuous time .

Theorem 4 .3 .8 :  The s ta t iona ry mean queue length in contin-

uous time is g iven by

Y ’ (l-)e=p{X ’ (l-)e—x 0R~~ (O)R ’ (1 )e}+~-~*
2p (2)

*{_x 0R (O)Q* +X~l_ ) }{j_A+~
(fl Q*}(t*o_Q*)

_2
RI (l )e ,

(4.3. 9)

w h e r e  r~ is any real numbe r such that

r *>m ax( _ Q~ i).

Proof: Differentia ting (3.3.19) with respect to z, letting

z-+l- and pos t -mu l t ip ly ing  by e we get

+

~*[x0{U(l ,O)-I }+x(l-)]f fl-Ii (t)}~ (t )d t
0-

=p~ X ’ (l-)e-x 0R
1 (0)R’ (1 )el +

~*[ x R 1 (O)Q *+X(l )]~ {l-~ (t)}[oR’(l )et +

{I~ eQ*t}{T*O~Q*} 1
RI (1)e]dt 

— 

(4.3.10)
by (1.3.13)

where r~ is any real number such that r * ? max ( _ Q * . .)
1

N ow

(I~ e~ 
t}(T*O_Q*)=T *o_ r *Q Q* {I_e Q*t },

for,
Q*te e=o ,



whence

(I~ e~ 
t } (t *O Q*) •

~
l=_ Q* ( I_ e Q t ) (T *o_ Q* ) 2

Thus

-lI {l—H(t)}{I-e M } { t *o_ Q* } R’ ( l ) ed t
0-

=-I {l~ H (t)}Q*{I~ e
Q t }dt{t *0~Q*}

2RI (l)e
0-

(4.3.11)

for ,

f { l ~~ (t)}Q* eQ*td t A ~.I

as can be seen by integration by parts and (2.2.9).

Pu tting (4.3.11) in (4.3.10) we get (4.3.9).

We now ver ify the correctness of (4.3.9) by particular-

izing to the

Spec i al cases:

a) M/G /l queue: In this case (4 . 3 . 9 )  reduces to

Y’ (1 )=P{(P +2(~~~~) ~~~~~~~~~~~~~~~~~~~~ )
( )

~
+
~cL)~ 

x2~
(2 ) x s (1)

as is well-known.

b) M/ G/ l  queue w ith group a r r i va ls :  Here (4.3.9) reduces to

Y ’ (1 )p (X’ (1 )-x0(-~ )A$ ’ (l~~)}4~~~~~~
2
~~2)

=
~~2 

p 
[A
2
~
(2){$(1 ))2+~~

”(l-) 
2l4{x$ a (l~~)}

2
~

(2 )
( — p) {~~‘(l—) } J

-- - - -- 4- - 
----- --



P+2(L~~) 
x 2p (2) {.1(l ) } 2÷ 1 

~~~~~~~~~~~~~~~~ -

~~~ :~~~:~
-X ’fl ‘ I s ”(l-
— 

‘ ‘2 + ‘(l-

We are now ready to obta in the second ( f ac to r i a l )

moment of x. We s ta te  our resu l t  as

Theorem 4 .3 .12 :

X” (l- )e=-2X ’ (l-)u t (l-)-X(1-)u ”(1-)+~ ”(l-)-2 p 2

~3(i ) [n’”( l-) +{3~ ” ( l -) +6~ (1-~~) } { X ’  ( l- ) e +X( l  )u ’ ( l -) }

-3 pn ” ( l — ) +x 0U” ( l— ,O ) e +3x 0U ” ( 1 — ,O)u ’ ( l — )

+3x 0U’ ( l - ,O) u ” ( l - )+ x 0 { U( l ,O ) - I } u”(l-~~ ( 4 .3 .13)

Proof: D i f fe rent ia t ing ( 4 . 3 .2 )  tw ice  w i th  respect to z and

rearranging the terms we get

X ” ( z ) u ( z ) = - 2 X ’  ( z ) u ( z ) - X ( z ) u ” (z)

~(z-n (z)) [~2{ i~~n ’ ( z ) } X ’  ( z ) u ( z ) - 2 { l - ~~’ ( z ) } X ( z ) u ’ ( z ) +

n ”(z)X(z)u(z)+n ” ( z ) x 0cU(z ,0)-I}u(z)+2n ’ (z ) x 0u ’(z,o)u(z)

+2n ’ ( z ) x 0{U(z ,0)-I}u ’(z)+r,(z)~0U” (z ,Q)u(z)+

2 n (z ) x 0U ’ ( z ~O)u ’(z)+n (z ) x ü{U(z~O)-I )u”(z)] (4.3.14)

--

~

--— - -- - -—- --- - - - - - ~~ - - - - —-- - - - - - - --
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Now as z+l - , the quantity in square brackets abQve converges

to

— 2 ( l — p ) X ’  ( l — ) e — 2 ( l — p ) X ( l — ) u ’ ( l—)+ r i ” (1 — ) +2 p~ 0U’ (1 ,O)e+

2px 0 { U( l  , O ) — I } u ’ ( l — ) ÷ ~~U” ( l  ,0) e +2~~ U’ (1 ,O ) u ’ ( 1 — ) +

x 0 { U( l ,O ) - I} u ” ( l- )

=—2 (1—p ) X ’  ( 1 — )e—2 (1—p )X ( 1— )u ’ ( 1— )+r~ “(1— )+2p (1—p )

+x0U” ( l ,O )e +2~~U ’(l ,0)u ’(l—)+~~{U(l ,0)-I}u ”(l—)

= 0 (4.3.15)

where the last  equal i ty abo ve is got by subst i tu t ing the

value of X ’ ( l - ) e  from ( 4 .3 .6 )  and the one before that is

got by using ( 4 .3 .3 )  which impl ies

x 0U’ ( l ,O)e+~~ (U( l,0 ) - I} u ’ ( l- ) ( l — p ) .  (4 .3 .16 )

Thus to evaluate the limit as z+l - of (4.3.14) we can apply

L’ H o s p i t a l ’ s Rule on the third term in the right side of

(4 .3 .14 ) .  After some gruesome computat ions we get

X”( l—)e=—2X ’ (l—)u ’ (1—)—X( l—)u ”(l—) +

3( 1 p)[3n ( l - )X ’ ( l - ) e + 3 n ( l - )X ( l - ) u ( l- )+n ( l- )

+3n ”(l-)x 0U ’ (l ,0)e+3~ ”(l— )x 0{U(l ,0)-I)u ’(l-)

+3px 0U” ( l  ,O)e +6p~~ U’ ( 1 ,O ) u ’ ( l- ) +3px 0{ U(l  ,0 ) — I } u ” ( l- )

+x 0U”( l ,O)e +3x 0U” ( l  ,0)u ’ ( l- )+3~~ U’ (1 ,0 ) u ” ( l- )

+x 0{ U( l

---

~

A 
-



r 
- -

~~~~ 

-

~~~~~~~~~~~~~~~~~~~~~~~~
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= — 2 X ’  ( l — ) u ’ ( l — ) — X ( l — ) u ” ( l — ) +

3( l pJ[n ( l- )+3f l ( l - ) { X ’ ( l - ) e + X ( l ) u ’ ( l - ) + ( l - P) }

+3p{2 (l—p)X’ (l—)e +2 (l—p)X(l—)u ’ (l— )— n ”(l—)— 2p(l—p )}

+x 0U”( l ,0 ) e +3x 0U” ( l  ,0)u ’ ( l— ) + 3 x 0U’ (1 ,0 ) u ” ( l — )

+~~{U(1 ,O)~ I}u m (l~~)] by using (4.3.16).

Now (4.3.13) is got by using (4.3.15) in the above equation.

Remarks:

1. As pointed out earlier the formulas (4.3.6) and (4.3.13),

in spite of their forbidding forms , are well-suited to

numerical com putations.

2. Hi gher moments of the queue length can , in principle , be

found using simi lar techniques. But the resu l t ing formulas

become extremely difficult to implement. Usual ly, however ,

these are beyond the realm of practical interest.

a

- --A - - - -- - _ - - - _  -— - 
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CHAPTER V

THE VIRTUAL WAITING TIME

5.1 In troduction

The v irtual waiting time V(t) at time t is the length of H

time a customer who ar r ives at time t wa i t s  before entering

ser v ice.  Recal l  that J ( t )  is the phase of the arr iva l  process

at t+. In this Chapter we derive the joint distribution of

V(t) and J(t) as t+oa . To this end it shal l  be assumed that

the arriving groups are served on a first-come-first-served

basis; we shall no t assume anyth ing regarding the order of

service within each group.

The formula for the steady-state Laplace-Stieltjes

transform of V(t) generalizes the well -known Pollaczek-

Kh inchin formula of the M/G/l queue to the N/G/l queue. It

is also shown that the steady-state c.d.f. of V(t) satisfies

a Vol terra system of integral equations. It Is well -known

that such a system can be solved numerically with considerable

ease using classical methods.

5.2 Distribution of the Virtual Waiting Time

Let 
-

- - t ~- _4 —i - - - _1 -
~

~4 (x)=Lim P[V(t)$x,J(t)=j IX(O)=i, J(O)=j’], x �O , 1~ j~ m
t+o°

j

_ _ __ _ _ _  ~~~~ --~~~~~~~~~- - -- - - - - - - - - - - -~~~~~~~~~~~ -- - - - — — - -- --
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The Lap lace-St ieltje ’s transform

W (s)=r e~~
x dcl .( x ) ,  Re s?O.

0-

We a lso  let ~
( . )  and W (.) denote the rn-vectors  whose j - th

components are ~~~~~ 
and W~(.) respectively. Also will

denote the v - fo ld  con vo lu t ion of i~ w ith i t se l f .

Theorem 5 .2 .1 :

if s>O
(5 .2 .2 )

Lo - if s=O

Remar k: Formula (5.2.2) is a direct generalization of the

Po l Ia czek- Kh inch i n  formula to the N/ G/ l  model.

Proof: By a direct probabilistic argument considering the

las t  departure epoch -r before t we ob ta i n

P[0<V(t)~ x ,J(t)=j x(O)=i ,J(0)=j ‘]=

oa m t • x - jV
1

+V
2
- l)

S S I dR 1
~ k ( r )  E P k . ( V 2, t_ - r )  I dH(t+w-r)H (x-w)

v 1 1 k l  c 0 -  V
1 v 2 O ~ w O -

m t . ,  t -r  m
+ S I dR~~ (-r ) I S S [dO (u)] E P .(v 2 , t — r - u ) .

k=l t=O- u=O- v 1 1 p=l V 1 kp v2 0 P3

x (v1 +v2— l)
I dH(t+w- t -u)  H ( x -w)

w 0-

The two terms above on the ri ght side correspond respectivel y

to the two cases diagramaticall y show n below .

_ _ _ _ _ _ _ _ _ _ _ _  _ _ _  — -------_ -  - -  -



Case 1 : Figur e 1

~~
:
~ =:1~~ at  l e a s t  v 1+v 2 -l depart

a r r i v a l s

service time

Case 2: F igure 2

J ( - t ) =j
V I

X ( t ) 0 arr i ve at least v1+v2-l depart
J ( r  ) = k (~~~~~ \I “-•- %--

I I I
t t+u t t+w t+x

arrivals
service time

Le tting t+oa in the above equation and using the Key-Renewal

Theorem (Theorem 6.3, p.153 , çin Iar [2]), we get

u r n  P [O<V( t)~ x ,J(t)=j IX(O)=I ,J (o)=j ’]
t+oa

oa m oa x (v +v - l)
=~~* s s f x (v 1, k)dt  s Pk . (v 2 ,t )  I dii(t+w) ii 1 2(x—w)

k 1  t O -  v2 0 ~ w 0 -

m t m
~~~ S I x(0,k)dt f s s [dO (t—y)] ~ P (v 2,y)dy

k=l t= 0- y=O- v 1 =l p 1  V
1 kp v2 0 ~

x -

I dH(y+w)H ‘ (x-w)
w= 0-

whence ,

-a--------- -- — -—--- .-— - -—--- — — A
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x (v +v - l)
~ * S I x S P(v 2,t)dt I dH(t+w)H 1 2 (x-w)+

-‘ v 1~ l t=O- V
1 v2 O w=O-

t X
I dt I s [dU (t-y)] z P(v2,y)dy I dH(y+w )

t=O- y=O- v~~l V 1 v 2 0 w=O-

H (x-w),

for ,

Thus , -

W ( s ) =~ 0+s f e SX {~ ( x ) _ i~(O ) }dx

- x
=~ +s~~ S x I e~~~dx I S P(v ,t)dt I dii(t+w)

x=O+ t=0- V2 O w= 0-
(V 1

+v
2-l)H (x-w)

x
+sF* x0 ~ U~, I e

_ SX
dx I S P(v 2,t)dt I dH(t+w)

v 1 l 1 x=O + t 0 -  V
2 O w O -

(v 1+v 2—l )
H (x-w)

CO v + v 1
5 I I S P(v2,t)dte 5”d~i(t+w)H 

1 2 (s )
v1 1 1 t=0- w=O- v2 O

v + v - l
z U I I s P( v2ot)dte 5V

~dii (t+w)H 
1 2

v 1 1 V
1 ~=o~ w=O- v2 0

which on no ting

E P(v ,t )z ”=exp {R(z)t}
• v 0

yields



p’!’ ~~~~~~~~~~~~~~~~~~~~~~~ 
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~ 
I I exp{R[H(s)]t}.dte

_ 5w
dii (t+w)H~~

l ( s )
v l  t=O- w=O-

E U,, I I exp{R [H(s)]t}.dte~~
’dH(t+w)H’~

1 (s )
V l  t 0  w 0 -

(5.2.3)

Now ,

• W
I exp{ (sI+R[H(s)])t} .dt={exp(sI+R [H(s)])w..I}{sI+R[H(s)]}
0-

Since the integral on the left side of the above equation is

anal ytic in Re s>0 , the right side has only removable sing-

ularities at a finite number of points in Re s>0 , where the

inverse fails to exist. Thus

I e x p { R [ H ( s ) ] t } d t  e 5
~’dii(t+w )

t 0 -  w=O-

= I exp[~ sI +R [H(s ) ] } t ] .d t  I e 5’~’dii(y)
t=O- y=t-

=r~ e x p{ R [ H ( s ) ]w } .d~ (w) ~ H (s ) I] ( s I+ R[H(s ) ]Y l

Using this in (5.2.3), for s>0 ,

~ 5~~ o+~*~~o V 1
V

V 1
V
’
()

r e x p{ R [ H ( s ) ]w } . d~ (w )~ H(s ) I] (sJ+R [H (s )JY l
Lw=O-

=x O +C H~~~
[x OU ( H ( 5 )  ,0) + X ( H ( s ) ) - x 0].

[ A ( H ( s )  ,O)—H(s)I](sI+R[H(s)]Y~

=~0+~*x0R~~(O)R[H (s)](5I +R[H(5)])
’

as can be seen by using (3.2.6) and (2.2.5). (5.2.2) now

follows for s>O from (3.3.7).

---- ---- -- - - - - ---— -- ~~- - - - - -  ---- -- -- - - - -—~~~~~~~~~~~~ ------ -- -- - - - - -
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Mul tiplying both sides of (5.2.2) by sI+R[H(s)),

W(s)(sI+R[H (s)]}=s~0.

Letting s+O, we get W(O+)Q*=0. So to show that W(O+)=o it

now suff ices to prove that W(0+)e=l. To this end multiply

(5.2.3) by e and let 5+0 to get

W(0+)e=(~~e)+Lim ~~ E (x e) I dt I e sw di~(t +w )
s+O v l ~~‘¼~

— 

~=o~ w 0 -

+Lim ~~~~~~~~~~~~~ I dt .r e~~ ’dii (t+w),s+O t=O- w=O-

for , -

exp(Q*t) •e~e
and

CO

S U e=e.
—v 1

Thus

~j (O+)~~ (l_p)+ ~*Lim I dt .r e~~
’di~(t+w ) by (3.3.11)

s+O t= 0- w=0-

=(l~ p)+~*j~~
l)

and the proof is complete.

Remark: No te that for the M/G/l queue , (5.2.2) reduces to

the well—known Pollaczek -Kh inchin Formula

W ( s )  = 

~~~~~~~~ 
, s>O ,

for , in this case y0=( l— p) and R(z)=— X+xz.



Theorem 5.2.4: The vector ~(x) satisfi es the Vol terra sys tem
of integral equations

L ~(x)=~~+R*K (x), x~ O (5.2.5)

where ,
Xr CO

z

~T o E q (k) )(y)~T0A0 o E r ( k)~~~)(y)]dy, x?O ( 5 . 2 . 6 )

Proof: From ( 5 . 2 .2 )  it Is seen that for s>0 ,

W ( s ) {  sI +R [ H(s ) J } =s~~
or

(s )~~ 0+ W ( s ) { — -  R[ H(s ) ] } .

Now

_

~~~

. R[H (s)]=4~.[A (x)fI_ A(j(H(s)))}_TQ4,(H(s))..TeAoO,(H(s))],

which shows tha t -
~~~
. R[H(s)] is the Lapla ce-Stiel-tjes

transform of K(•) given in ( 5 .2 . 6 ) .  Hence the Theorem .
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